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Abstract
The most common neuropathy associated
with diabetes mellitus is a distal sensory
polyneuropathy. The relative importance
of the direct eVects of prolonged glycae-
mia on nervous tissue compared with
indirect damage resulting from changes in
blood vessels is not known. Although the
importance of glycaemia is confirmed by
a study showing that the incidence of neu-
ropathy is greatly reduced by strict gly-
caemic control, many of the details of the
deleterious eVects of glycaemia on the
peripheral nervous system (PNS) are not
understood. These may be the result of
direct damage to any of the cells in the
PNS or the disruption of neuronal me-
tabolism, axonal transport mechanisms,
or repair capabilities; in addition, they
may result from the eVects of glycation on
PNS connective tissue or a combination of
some or all of the above mentioned
mechanisms. The relative importance of
these various mechanisms by which
diabetes damages the PNS is a matter of
conjecture. Therapeutic approaches tar-
geting a specific mechanism such as those
utilising aldose reductase inhibitors, or
advanced glycation endproduct inhibitors
have met with limited success. Clearly, it
is diYcult to design a treatment for
diabetic neuropathy while its pathogenesis
is still poorly understood.
(J Clin Pathol: Mol Pathol 2001;54:400–408)
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Abnormalities of glucose metabolism in
diabetes mellitus lead to an increased risk of
atherosclerosis and neurological and microvas-
cular complications. Distal sensory symmetric
polyneuropathy (DPN) is the most common of
the various peripheral nerve disorders associ-
ated with diabetes. This syndrome aVects the
extremities in a “glove and stocking” distribu-
tion and is usually more severe in the legs. The
symptoms are rather variable and can be either
motor, sensory, or autonomic, or a combina-
tion of any of these. Similarly, the nerve fibres
involved may be of a specific calibre or all fibres
may be aVected equally. The pathogenesis is
currently uncertain, but the hypothesis that
chronic hyperglycaemia plays an important
role is supported by the findings of the diabetes
control and complications trial (DCCT) re-
search group, 1993, which found that strict
glycaemic control reduces the incidence of
neuropathy.1 A more recent trial emphasises a
multifactorial basis for the neuropathy in type
II diabetes.2 Changes in the vasculature in

particular may play an important part in
producing nerve damage.

There are various possible mechanisms by
which glycaemia could have an adverse eVect
on the peripheral nervous system (PNS) and it
is diYcult to disentangle the importance of the
diVerent insults. Not only do the nerve fibres
degenerate, but attempts at regeneration by the
damaged fibres, although vigorous, are short
lived, and the numerous regenerative sprouts
produced (fig 1) fail to survive.3 Therefore, the
neuropathy becomes progressively worse. This
worsening occurs in a dying back pattern
(distal–proximal direction) that is characteris-
tic of failure in fast axonal transport. It is
unlikely to result from a failure of Schwann
cells to support their axons because this would
be expected to aVect nerve fibres equally along
their length. Among the various alternative
causes of the failure of the sprouting axons to
persist and mature are metabolic failure of the
neurone, ischaemic eVects caused by vascular
abnormalities, or deleterious eVects of glyca-
tion on the Schwann cells or extracellular
matrix. There is also the additional possibility
that abnormally glycated collagen in the
endoneurium of the nerve trunks might act as
a physical barrier to elongation of the axonal
sprouts. Glycated collagen is less susceptible to
the protease digestion that is a necessary
adjunct to axonal elongation and hence may
not be removed to allow new axons to
penetrate the extracellular matrix. Glycation of
the Schwann cell basal laminal components
may also have the eVect of reducing the ability
of the new axons to recognise and/or adhere to
the original Schwann cell basal lamina, which
remains as a tube when the myelinated fibre
that it had initially surrounded degenerates. If
undamaged, this basal laminal tube connects
the damaged region and the end organ and can
therefore act as a guide for regenerating axon
sprouts. However, in diabetes, even if the new
axons reach an appropriate end organ, recon-
nection may be hindered by abnormalities in
the axonal growth cones as a result of glycation
of the cytoskeleton, plasma membrane, or
extracellular matrix.

Non-enzymatic glycosylation of any tissue
involves the covalent linkage of glucose, prima-
rily to lysine residues, producing a SchiV-base
intermediate. This then undergoes an Amadori
rearrangement to a stable ketoamine derivative
that is then further rearranged to a hemiketal
structure.4 The net result is the formation of
insoluble and irreversible advanced glycation
endproducts (AGEs). The AGE pentosidine is
formed by glucose auto-oxidation,5 and Nå-
(carboxymethyl)lysine (CML) is an AGE
formed by both glucose auto-oxidation and
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lipid peroxidation.6 Pentosidine is relatively
easy to quantify and is frequently used as a
measure of total AGE products in experimental
studies of the eVects of glycation on the PNS.

It has been shown that increased intracellu-
lar AGE formation occurs in cytoskeletal and
myelin proteins in nerve specimens from
patients with diabetes.7 Some earlier experi-
ments on retinal blood vessels seem to have
underestimated the degree to which AGE
formation occurs by measuring only fluores-
cent AGEs.8 This may be misleading because
later work on the lens and renal cortex found
that non-fluorescent AGEs predominate and
that AGE formation increases disproportion-
ately with the degree of the increase in blood
glucose concentrations.9 AGE formation is
considerably faster with intracellular sugars
such as fructose than with glucose. Despite the
slow rate of glycation by glucose, after only one
week in high glucose medium the AGE content
of endothelial cell cultures increased by 13.8%.
In this experiment there was also a 70% reduc-
tion in mitogenic activity, which was thought to
be caused by the 6.1 fold increase in AGE for-
mation on basic fibroblast growth factor.10 A
possible explanation for the considerable rise in
intracellular AGEs is that hyperglycation in-
duces the formation of glycolytic intermediates,
which are much more reactive than glucose.

There are several possible pathways by which
AGE formation could be involved in the devel-
opment of diabetic complications.11 First, both
intracellular and extracellular AGE may be
directly pathogenetic. Second, AGE induced
alterations of DNA and nuclear proteins may
also occur.12 Third, extracellular AGEs may
interfere with cellular adhesion and interac-
tion, and intracellular AGEs may alter protein
transport and function. These indirect eVects
provide a mechanism by which diabetes may
damage cells such as microvascular endothelial
cells and neurones that do not require insulin
for glucose transport. In addition, the increased
transport of glycated serum albumin across the
blood–nerve barrier may induce deleterious
osmotic changes in the endoneurium.13 Prefer-
ential transport of glycated immunoglobulins
may be the explanation for the considerable
increase in trapped IgG and IgM in diabetic
peripheral nerves both in the perineurium14

and on the myelin sheaths.15 It seems reason-
able to postulate that trapping of IgM on
myelin may contribute to peripheral nerve
damage. Although demyelination is not the
major pathological change seen in most
diabetic nerve biopsies this could be because of
supervening axonal damage.

Experiments to demonstrate IgM trapping
have not been performed on streptozotocin
(STZ) induced diabetic rat nerves, but it has
been shown that there is non-enzymatic glyco-
sylation of both peripheral and central nervous
system (CNS) myelin.16 The pathogenic
importance of this is unclear because the CNS
is less aVected by diabetes.

EVects of diabetes on dorsal root
ganglion neurones
Diabetic polyneuropathy is often predomi-
nantly sensory but there is little evidence to
suggest the loss of dorsal root ganglion cells.
Few studies have attempted to measure this,
but an early study by Dolman (1963) found no
significant losses,17 and a more recent study on
a single patient reported only mild dorsal root
ganglion neurone loss.18 Some experimental
studies have shown a reduced size of the dorsal
root ganglion neurones,19 and it is possible that
some aspects of their function may be re-
duced.18 Further support for the dying back
nature of the axonopathy suggested by Said
and colleagues20 has been provided by studies
of myelinated fibre density at diVerent levels in
the PNS. These showed an increased loss in the
most distal parts of the nerves.21 High glucose
concentrations could damage sensory neu-
rones preferentially because of their location in
the dorsal root ganglia, where the blood–nerve
barrier is less complete. This is the result of
fenestration of a proportion of the blood vessels
within the capsule, making it easier for proteins
to leak out of the blood vessels into the
endoneurium22; fenestrations are very rare in
the endoneurial microvessels of the peripheral
nerve trunks.23 Work on congenitally diabetic
Bio-Breeding (BB) Wistar rats with a selective
sensory neuropathy found a reduction in blood
flow in the dorsal root ganglion but not in the
sciatic nerve.24 In the spinal cord and brain

Figure 1 Transverse section of a radial nerve from a 42 year old woman with distal
sensory symmetric polyneuropathy. There are circular clusters of regenerative sprouts
(arrows) and the endoneurial microvessels are encircled by thickened basal lamina. Resin
section, stained with thionin and acridine orange. Original magnification, ×200.
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where motor neurones are situated, the blood–
brain barrier could be expected to protect them
against high circulating glucose concentrations.

Recent experimental work suggests that the
PNS cytoskeleton is more vulnerable to
non-enzymatic glycosylation than the CNS
cytoskeleton.25 This diVerence could also con-
tribute to preferential damage of sensory dorsal
root ganglion neurones compared with motor
neurones. Additional support for the import-
ance of AGEs in the development of PNS
damage is provided by experiments on STZ
diabetic rats using AGE inhibitors, such as
aminoguanidine. Sensory and motor nerve
conduction velocities are reduced in this
animal model of diabetes and are improved by
treatment with aminoguanidine.26

Some tissue culture studies also support the
hypothesis that glycation has a direct eVect on
the neurone. Recent work by N Yagihashi et al
(personal communication, 2000) found that
the injection of AGEs into rat nerves produced
similar neuropathic changes to those found in
STZ diabetic rats. Other experiments on grow-
ing dorsal root ganglion neurones from STZ
induced diabetic rats in vitro show a reduction
in survival and growth compared with normal
neurones,26a but this could be the result of some
eVect of diabetes other than glycation.

Axonal dysfunction in diabetes
Disruption of neural function by AGE forma-
tion may aVect the cytoskeleton directly and
may also involve intracellular messengers and
protein phosphorylation. Ryle and Donaghy7

detected increased concentrations of pentosi-
dine in both myelin and cytoskeletal fractions
from human diabetic nerves, but there were no
changes in the concentration of the early solu-
ble glycation adduct furosine. AGEs cause
protein crosslinking, resulting in the formation
of insoluble aggregates.27 In vivo it seems that
the most important pathway leading to the for-
mation of AGE products is via the Amadori
product. Amadori glycation products have
been demonstrated in the spinal cord of
patients with amyotrophic lateral sclerosis and
spinobulbar muscular atrophy, and may be
related to glycation of cytoskeletal proteins.28

Non-enzymatic glycosylation of intracellular
proteins, particularly tubulin29 and actin,30

occurs readily. This inhibits GTP dependent
polymerisation of tubulin and produces aggre-
gates resistant to disruption by detergents or
reducing agents. The mechanism for fast
axonal transport (200–400 mm/day) of vesicles
and mitochondria along the axon uses microtu-
bule associated proteins and a kinesin motor to
drive them along microtubules aligned parallel
to the long axis of the axon. A similar process
using a dynein motor provides retrograde
axonal transport of eVete proteins for recycling
in the perikaryon. The process at the distal end
of the axon, where proteins are packaged for
return to the cell body, is known as turnaround.
A very small change in fast axonal transport
could disrupt turnaround, despite having little
eVect on transport times.31 Glycation seems to
aVect a subset of proteins diVerentially; in STZ
induced diabetic rats, leucine transport was

aVected by diabetes but glucosamine was unal-
tered.32 Similar changes in axonal transport
were found in galactosaemic rats, suggesting
that glucose or its derivatives are important in
the development of diabetic neuropathy.33

In support of the importance of changes in
the axonal cytoskeleton in human diabetic
neuropathy, experimental work on diabetic rats
has shown a relatively small reduction in the
rate of fast axonal transport34 35 and a greater
reduction in retrograde transport.36 Changes
found in the dorsal root ganglion in the expres-
sion of nerve growth factor (NGF)37 and
insulin-like growth factor (IGF)38 could be
explained by impaired axonal transport, par-
ticularly the retrograde flow of neurotrophins.39

Growth factor abnormalities could be impli-
cated both in the development of diabetic neu-
ropathy40 and also in the impairment of axonal
regeneration. The relative importance of the
glycation of cytoskeletal proteins and meta-
bolic changes in the neurone is unknown.

Although the animal models of diabetic neu-
ropathy show very few morphological changes
and do not replicate the extensive degeneration
often seen in human diabetic polyneuropathy,
it has been confirmed that amino acids, mainly
lysine, in diabetic rat nerves show almost a
threefold increase in non-enzymatic glycosyla-
tion.41 Axonal regeneration is reduced in both
STZ induced diabetic and galactosaemic
rats.42 43

A protein that may be particularly important
in the development of diabetic neuropathy is
the small protein known as growth associated
protein 43 (GAP-43). GAP-43 is normally
only important in development but is upregu-
lated in regeneration.

In vitro GAP-43 binds calmodulin only at
low calcium ion concentrations and dissociates
when concentrations are high. This calcium
dependant property is eliminated by phospho-
rylation by a protein kinase. Biologically, the
function of GAP-43 may be to localise
calmodulin to specific sites on the cell mem-
brane under resting conditions. When the neu-
rone is stimulated, a rise in calcium ions
releases calmodulin, which is then available as
an activator for calmodulin dependent proc-
esses in the presynaptic region. Simultane-
ously, GAP-43 is available as a substrate for
calcium/phospholipid dependent protein ki-
nase and hence cannot reassociate with cal-
modulin.44 45 GAP-43 can then be dephospho-
rylated by the action of calcineurin, which
abolishes the calcium signal.46 One could
speculate that if this process were disrupted in
diabetes, this could result in a dying back neu-
ropathy and also produce a deleterious eVect
on axonal growth cones. Growth cones are the
growing tips of regenerating axons so that
abnormalities in these structures could inhibit
regenerative success. In vitro experiments have
strengthened this theory by confirming that the
depletion of GAP-43 leads to growth cone
abnormalities.47

GAP-43 is manufactured in the cell body
and transported by fast axonal transport in
vesicles.48 Calmodulin is transported separately
in slow component b (∼ 2 mm/day),49 the same
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mechanism by which components of the
cytoskeleton are moved. Concentrations of
GAP-43 in the dorsal root ganglion in normal
animals are increased after peripheral nerve
injury, but not after dorsal root injury,50

suggesting that the signal for upregulation is
derived from the periphery. In addition,
ligature plus crush experiments in STZ dia-
betic rats have shown a reduction of immuno-
staining for GAP-43 proximal to the obstruc-
tion; the amounts of mRNA in the cell bodies
were similar to those found in normal ani-
mals.51 If this is the result of the eVect of
diabetes on transport or turnaround, it must be
specific to GAP-43, because concentrations of
vasoactive intestinal polypeptide, which is car-
ried by the same system, were not reduced.
Slow axonal transport is also altered in
diabetes, so this could aVect the supply of cal-
modulin to the presynaptic region and possibly
also disrupt the GAP-43 related mechanisms.

Glycation of the extracellular matrix
The extracellular matrix (ECM) within the
nerve trunk comprises mainly fibrous collagens
I and III, arranged predominantly longitudi-
nally, parallel to the nerve fibres, plus smaller
quantities of other connective tissue proteins,
and the basal laminal sheaths around Schwann
cells, perineurial cells, and blood vessel en-
dothelial cells.

It is diYcult to separate the eVects of glyca-
tion on the cytoskeleton from glycation of the
extracellular environment because they are
interrelated. If connections between the axon
and its end organs were damaged by glycation,
this could produce alterations in transport, and

thus the observed growth factor changes.
Direct observations on nerve biopsies from
patients with diabetic neuropathy suggest that
the changes in the endoneurial microenviron-
ment produce morphological alterations that
may be very important. A chain of Schwann
cells in a cylindrical basal laminal tube
surrounds each myelinated axon. When an
axon degenerates, the Schwann cells multiply
and form columns of cells within this tube
(bands of Büngner).52–54 Regenerating sprouts
are produced by the intact part of the axon and,
if the basal lamina is not disrupted, they will
track along this column of Schwann cells inside
the basal laminal tube to reach the original end
organ of the axon. In non-diabetic nerves, the
original basal laminal tube later breaks down55

and is rarely seen by the time the regenerating
sprouts have become myelinated.54 In a high
proportion of diabetic nerves there are numer-
ous mature regenerative sprouts with well
developed myelin sheaths within a prominent
and often circular persisting basal laminal tube
(fig 2). It has been suggested that the abnormal
persistence and circularity of this tube is the
result of glycation of its components.56

Several reports describe the deleterious
eVects of glycation of the ECM on the growth
of a variety of cells, including endothelial,57

mesangial,58 and human glomerular epithelial
cells.59 The most relevant to diabetic neu-
ropathy are experiments showing reduced
growth of neuroblastoma cells on glycated
laminin.60

Non-enzymatic glycosylation of collagens
produces crosslinkages and hence may produce
physical alterations in the properties of the
ECM. Chemical alterations may render the
environment unattractive to the growing axons
by reducing the ability of the growth cones to
bind to the ECM, hence leading to the
observed regenerative failure. In addition to
changes in the basal lamina itself, the basal
laminal tubes surrounding axonal sprouts in
diabetic nerves are often densely packed with
fibrillar collagen (fig 2). Glycation renders col-
lagen less digestible by proteases so it may act
as a physical barrier to axonal growth.61

Measurement of collagen fibrils inside the
Schwann tubes as compared with that in the
endoneurium and epineurium showed an
increase in their diameter, but this was also
found in other chronic neuropathies.62 Re-
cently, scanning force microscopy has been
used to show that rat tail collagen from sponta-
neously diabetic BB/WOR/MOL\BB rats has a
larger diameter than that from non-diabetic
rats. This work also showed that these physical
changes correlated with increased concentra-
tions of fructosamine and pentosidine, both in
diabetic rats and glucose incubated collagen.63

There has been considerable discussion over
the years about the time course of axon exten-
sion versus Schwann cell multiplication, and
whether axons precede or follow Schwann cells
in the outgrowth from a transected stump.
Recent experiments on regenerating axons in a
film model in vivo showed that there was a lag
of three days between axon sprouts appearing
and Schwann cells following them. After this

Figure 2 Electron microscopy of a regenerative cluster shows the persistent basal laminal
tube (arrow) around myelinated and unmyelinated axonal sprouts (asterisks). Radial
nerve, 47 year old man with distal sensory symmetric polyneuropathy. Contrasted with lead
and uranyl acetate. Bar, 1 µm.
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period, however, the Schwann cells were
needed for further axonal extension.64 During
the initial growth phase axonal growth cones
are directly attached to the extracellular matrix.
This is mediated by several diVerent mecha-
nisms at the basal laminal interface. The rapid
movements of actin filaments in the growth
cone may be regulated via integrin mediated
interactions involving F-actin, talin, vinculin,
and á-actinin with the substrate.65 It has been
shown that actin and tubulin undergo non-
enzymatic glycosylation readily.29 30 These pro-
teins are essential components of the growth
cone and the rearrangement of actin allows
changes in shape and movement of the growth
cone. Therefore, it seems likely that glycation
would reduce the mobility of the growth cone.

Details of the linkages between the basal
lamina and axon or Schwann cell diVer for the
various components. Laminin is the largest
molecule and has several sites either via galac-
tosyltransferase, proteoglycan, or a variety of
non-integrin receptors. It has recently been
shown that vinculin is specifically associated
with integrin at the points of the filopodia and
in the central domains of growth cones.66 AGE
formation on laminin causes decreased poly-
mer self assembly and decreased binding to
other ECM components. It has been shown to
modify the neurite promoting sequence and
inhibit neurite outgrowth considerably.60

Another component of the basal lamina,
fibronectin, may be bound via heparan sul-
phate proteoglycan (HPSG) or tissue plas-
minogen activator.67 Binding to HPSG is also
reduced by AGE formation. Anionic HPSG is
absent from the glomerular basement mem-
brane in STZ rats with prolonged duration of
diabetes.68 Fibronectin production in me-
sangial cell basal lamina is increased by
glycation, possibly because of an altered
responsiveness to cytokines. This is associated
with a 50% reduction in cell proliferation.69

Schwann cells can deposit fibronectin as part
of their basal lamina, using a mechanism
involving collagen IV.70 AGE formation inhibits
the development of the normal network struc-
ture of collagen IV by interfering with the
binding of the non-collagenous NCl domain to
the helix rich domain.71 Heparin binding to
collagen IV regulates polymerisation.72 It has
been shown that glycation of the heparin bind-
ing domain results in decreased endothelial cell
adhesion,73 but it is not yet known whether
Schwann cells or neurones are similarly
eVected.

The integrins that are involved in Schwann
cell linkage to collagen IV diVer from those
involved in fibronectin polymerisation. Where
there are several diVerent attachment types on
one component of the ECM, it is possible that
glycation could aVect one site but leave others
undamaged. A further complication is that
both the filopodia in axonal growth cones and
Schwann cells express the same integrin
initially,74 but the integrins on Schwann cells
change in the presence of neurones and with
myelination. It seems probable that â4 integrin

is involved in axon–Schwann cell interactions
and is downregulated in Wallerian degenera-
tion.75

Cell surface proteoglycans may also be
implicated in mediating Schwann cell–laminin
reactions.76 There is evidence that Schwann
cells can synthesise laminin-1 and use it to
support their migration on a laminin free sub-
strate.77 This could mean that Schwann cells
may prove to be less aVected by glycation of the
ECM. They only mature into myelin forming
cells when â1-integrins are functional,78 and
the regenerating axon sprouts seen in diabetic
nerves are often well myelinated (figs 1, 2). In
addition, laminin-2 is needed to promote neu-
rite outgrowth after Wallerian degeneration.79

Although neurones do not produce a basal
lamina, they normally express mRNA for lam-
inin genes,80 and these are upregulated during
regeneration.81 Neuronal growth on laminin is
severely aVected by glycation.60 It is not yet
known whether glycation aVects the separate
components of laminin components diVeren-
tially, but this is quite possible because AGE
formation on laminin not only decreases poly-
mer self assembly but also binding to collagen
IV and HSPG.82 This last protein is a
component of basal laminae that is postulated
to play an important part in the filtration prop-
erties of glomerular basement membrane.
Reduction in binding to laminin has been sug-
gested to lead to the overproduction of other
basement membrane components in the vessel
walls of diabetic kidneys.83 It could be postu-
lated that a similar mechanism leads to the
widening of the basal laminae of endoneurial
microvessels (figs 3, 4).84 Alternatively, or in
addition, there may be an accumulation of
basal laminal components as a result of the
increased resistance of AGE proteins to
protease digestion.61

Unfortunately, no studies on alterations of
the diVerent basal laminal components in dia-
betic peripheral nerves have been detailed
enough to confirm whether there is an
alteration in the proportions of the various
components. Morphometric and morphologi-
cal studies on human nerves suggest that the
factors causing thickening of vascular basal
lamina diVer from those producing widened
basal lamina in the perineurium.85 These stud-
ies suggested that the alterations in perineurial
basal lamina were more characteristic of
diabetic neuropathy than thickening of the
basal laminal zone around endoneurial capil-
laries. Perineurial basal lamina also widens
with age. DiVerences in the basal laminal com-
ponents and their diVering susceptibility to
glycation may be one factor in producing an
increase in basal laminal thickness, but another
may be the function of the perineurium as a fil-
ter between the epineurium and endoneurium
and its ability to trap glycated proteins.14 86

Morphologically, the appearances of the wid-
ened basal laminal zone diVer. In the perineu-
rium it takes the form of a smooth, amorphous
layer wider than normal with maximum width
on the central layers of the perineurium,
whereas around blood vessels there are multi-
ple thin layers of basal lamina often separated
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by fibrous collagen (fig 5A,B). Basal laminal
changes of both perineurial cells and blood
vessels diVer from the Schwann cell basal lami-
nal changes, where the abnormality is its
abnormal shape and persistence during regen-
eration; on undamaged fibres it appears to be
normal.

Extracellular calcium deposits may be found
associated with the basal lamina in the
perineurium of abnormal nerves and these are
particularly common in diabetic neuropathy.
The details of the process leading to the
formation of these deposits are unknown.87

Diabetes and the Schwann cell
The direct eVects of diabetes on Schwann cells
themselves rather than their basal laminal
envelopment has received little attention.
Diabetes could lead to a primary deleterious
eVect and hence to segmental demyelination
and/or to alterations to injury related changes
that could hinder regeneration. However, the
demyelinating changes and onion bulb forma-
tions reported in some nerve biopsy studies of
diabetic polyneuropathy (for example, Ballin
and Thomas88) might not result from primary
Schwann cell abnormalities, but could be
secondary to axonal abnormalities or represent
a coexisting chronic progressive inflammatory
demyelinating polyneuropathy.

Investigations of the changes in protein
expression of denervated Schwann cells show
that they upregulate the expression of NGF

and the NGF receptor, brain derived neuro-
trophic factor (BDNF), GAP-43,89 and the
adhesion molecules L1 and neural cell adhe-
sion molecule (N-CAM). It has been proposed
that the role of GAP-43 in these circumstances
is to enable the cell membrane to change its
shape90; this would suggest that it has a similar
function in both growth cones and Schwann
cells. In support of this notion, it has been
noted that Schwann cells at the neuromuscular
junction extend long process after nerve
injury.91 However, the re-establishment of
axonal contact does not immediately reduce
GAP-43 concentrations. In addition, many
Schwann cell specific proteins are reduced in
migrating Schwann cells compared with those
resident in the denervated distal stump.92 It
remains to be shown how diabetes alters these
injury related changes and how AGE formation
is involved.

Although glycation of the Schwann cell
cytoskeleton could also be expected to be del-
eterious, a study using in vitro experiments
with Schwann cells extracted from human
nerves found no alterations in those from
patients with diabetes: they had normal pheno-
typic characteristics, mitotic abilities, and anti-
genic properties.93 These authors did not take
into account the type of diabetes or the extent
of the pathological changes in the nerves.
Recent work has failed to find staining for the
AGE adduct, CML, in Schwann cells from
diabetic human nerves (A Bierhaus et al,
personal communication, 2000). On the other
hand, an experimental study on STZ diabetic
rats showed that they were more susceptible to
tellurium induced demyelination than normal
animals. This could be the result of diabetic
Schwann cells having an increased sensitivity to
stress, which could be a possible mechanism
for myelin breakdown.94

Figure 3 Light micrograph of resin section of sural nerve from 48 year old woman with
distal sensory symmetric polyneuropathy. The endoneurial microvessels have extensively
enlarged basal laminal ensheathment. Few myelinated fibres have survived in this case.
Stained with thionin and acridine orange. Original magnification, ×400.

Figure 4 Electron micrograph showing that the widened
basal laminal ensheathment around endoneurial blood
vessels consists of basal lamina (arrow) and collagen fibrils,
and contains pericyte processes (p). Same case as fig 2.
Bar, 1 µm.
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A less direct pathway for the production of
segmental demyelination has been suggested
by findings of macrophage recognition of
abnormally glycosylated myelin proteins in
diabetes.95 However, the rarity of reports of
active myelin breakdown in diabetic neu-
ropathy suggests that this is not an important
factor.

Although several studies have investigated
the existence of axonal atrophy, which could
produce secondary demyelination in diabetic
neuropathy, there is little direct evidence that
this is an important factor in the aetiology of
the neuropathy,96–98 apart from a teased fibre
study showing atrophy above a distally degen-
erating axon.20

Vascular abnormalities in diabetes
Damage as a result of vascular changes in the
nerve trunks may also be a contributory factor
in the evolution of diabetic neuropathy, par-
ticularly in older patients.99 Because ischaemia
would be expected to aVect motor and sensory
nerves equally, this may be the cause of the

motor deficit that can also be found. On mor-
phological examination, the loss of fibres
caused by ischaemia is typically patchy and
often greater in the centre of nerve fascicles.
Examination of biopsy material from cases of
diabetic polyneuropathy has produced conflict-
ing results. Dyck et al were convinced that they
had found evidence for focal fibre loss,21 100

whereas Llewelyn and colleagues101 found no
diVerence in patchyness between diabetic
nerves and those from inherited neuropathies.

Direct examination of the endoneurial blood
vessels has failed to show convincingly that the
endothelial cells are abnormal in patients with
diabetes. One light microscopic study showed
that the blood vessel lumens were closed,102 but
this was not confirmed by a later electron
microscopic investigation.103 However, widen-
ing and reduplication of the basal laminal
sheath that surrounds these endoneurial blood
vessels has been described frequently (fig
3).104 105 The eVects of non-enzymatic glyco-
sylation on basal laminal components have
already been discussed in the preceding

A B

Figure 5 (A) Electron microscopy of a section through the
whole thickness of the perineurium of a radial nerve fascicle
from a 39 year old man with distal sensory symmetric
polyneuropathy; the epineurial face is at the top. The basal
lamina of the perineurial cells is extensively widened
(asterisks). The small electron dense bodies are deposits of
calcium apatite. Bar, 1 µm. (B) Electron microscopy of the
perineurium from a normal control subject with
approximately the same numbers of perineurial laminae.
The basal laminae are much thinner. Bar, 1 µm.
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section. Changes in blood vessel basal laminae
may in part be the result of non-enzymatic gly-
cosylation occurring over many years. This
may occur even when blood sugar values are
normal,106 so that the eVect of diabetes is to
produce an accelerated version of the age
changes seen in normal nerves. Similar wid-
ened basal laminal ensheathment is often seen
in nerves from cases of neuropathy associated
with paraproteinaemia. This may be related to
the age of these patients and it may also be seen
in other nerve biopsies from older patients.

Although it has been suggested that the
eVect of non-enzymatic glycosylation on the
growth and adhesion properties of various cell
types, including endothelial cells,57 could be
related to the loss of pericytes reported in dia-
betic retinopathy,107 the numbers of pericytes
are slightly increased in diabetic polyneuropa-
thy.103

Summary
The aetiology of diabetic neuropathy is still
poorly understood but it is clear that it is very
complex. Glycation is probably a major factor
but dissecting its influence on the various com-
ponents of peripheral nerves is a very compli-
cated problem. To date, attempts to modify the
progression of the disease by drug treatment
targeted at specific pathways (such as the use of
the AGE inhibitor aminoguandine) have had
little success.
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